Residual variance estimation in machine learning
نویسندگان
چکیده
The problem of residual variance estimation consists of estimating the best possible generalization error obtainable by any model based on a finite sample of data. Even though it is a natural generalization of linear correlation, residual variance estimation in its general form has attracted relatively little attention in machine learning. both theoretically and experimentally to understand better their applicability in machine learning problems. The theoretical treatment differs from previous work by being based on a general formulation of the problem covering also heteroscedastic noise in contrary to previous work, which concentrates on homoscedastic and additive noise. In the second part of the paper, we demonstrate practical applications in input and model structure selection. The experimental results show that using residual variance estimators in these tasks gives good results often with a reduced computational complexity, while the nearest neighbor estimators are simple and easy to implement. & 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Non-parametric Residual Variance Estimation in Supervised Learning
The residual variance estimation problem is well-known in statistics and machine learning with many applications for example in the field of nonlinear modelling. In this paper, we show that the problem can be formulated in a general supervised learning context. Emphasis is on two widely used non-parametric techniques known as the Delta test and the Gamma test. Under some regularity assumptions,...
متن کاملAutoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation
We propose an automatic methodology framework for shortand long-term prediction of time series by means of fuzzy inference systems. In this methodology, fuzzy techniques and statistical techniques for nonparametric residual variance estimation are combined in order to build autoregressive predictive models implemented as fuzzy inference systems. Nonparametric residual variance estimation plays ...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملBridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 72 شماره
صفحات -
تاریخ انتشار 2009